MATH 245 S19, Exam 1 Solutions

1. Carefully define the following terms: even, tautology, converse, predicate.

An integer n is even if there exists an integer m, with $n=2 m$. A (compound) proposition is a tautology if it is logically equivalent to T. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain.
2. Carefully define the following terms: Division Algorithm theorem, Commutativity theorem, Conjunction semantic theorem, Contrapositive Proof theorem.
The Division Algorithm theorem states that for any $a, b \in \mathbb{Z}$, with $b \geq 1$, there are unique integers q, r with $a=b q+r$ and $0 \leq r<b$. The Commutativity theorem states that if p, q are propositions, then $p \wedge q \equiv q \wedge p$ and $p \vee q \equiv q \vee p$. The Conjunction semantic theorem states if p, q are propositions, then $p, q \vdash p \wedge q$. The Contrapositive Proof theorem states that if $\neg q \vdash \neg p$ is valid, then $p \rightarrow q$ is true.
3. Let $n \in \mathbb{N}$ be arbitrary. Prove that $n \mid n$!.

Since $n \geq 1, n!=n \cdot(n-1)$!. Since $(n-1)$! is an integer, $n \mid n!$.
4. Let $a, b, c \in \mathbb{Z}$. Suppose that $a \leq b$. Prove that $a+c \leq b+c$.

Note: do not just cite a theorem.
Since $a \leq b, b-a \in \mathbb{N}_{0}$. Hence $(b+c)-(a+c)=b-a \in \mathbb{N}_{0}$, and hence $a+c \leq b+c$.
Note: Solutions need to use the definition of \leq, twice.
5. Let p, q be propositions. Prove that $p \uparrow q \equiv \neg(p \wedge q)$.

Pf. The third and fifth columns of the truth table (to the right) agree; hence the two propositions are equivalent.

p	q	$p \uparrow q$	$p \wedge q$	$\neg(p \wedge q)$
T	T	F	T	F
T	F	T	F	T
F	T	T	F	T
F	F	T	F	T

6. Prove or disprove: $\forall x \in \mathbb{R}, x^{2} \geq x$.

The statement is false. We need one explicit counterexample. Take $x=\frac{1}{2} \in \mathbb{R}$. We have $x^{2}=\frac{1}{4} \nsupseteq \frac{1}{2}=x$.
7. Prove or disprove: For arbitrary $x \in \mathbb{R}$, if x is irrational then $2 x-1$ is irrational.

The statement is true. Contrapositive proof. We assume $2 x-1$ is rationsl. Hence there are integers a, b, with $b \neq 0$, such that $2 x-1=\frac{a}{b}$. Now, $2 x=\frac{a}{b}+1=\frac{a+b}{b}$, and $x=\frac{a+b}{2 b}$. We have $a+b, 2 b \in \mathbb{Z}$, and $2 b \neq 0$, so x is rational.
8. Without using truth tables, prove the Composition Theorem: $(p \rightarrow q) \wedge(p \rightarrow r) \vdash p \rightarrow(q \wedge r)$.

METHOD 1: direct proof. We apply Conditional Interpretation twice to the hypothesis, to get $((\neg p) \vee q) \wedge$ $((\neg p) \vee r)$. Now we apply distributivity to get $(\neg p) \vee(q \wedge r)$. We apply Conditional Interpretation again to get $p \rightarrow(q \wedge r)$.
METHOD 2: cases, based on p. Case p is false: By addition, $(q \wedge r) \vee \neg p$.
Case p is true: By simplification on the hypothesis, $p \rightarrow q$; and, by modus ponens, q. Now by simplification on the hypothesis the other way, $p \rightarrow r$; and, by modus ponens, r. Now, by conjunction, $q \wedge r$. By addition, $(q \wedge r) \vee \neg p$. Hence, in both cases, $(q \wedge r) \vee \neg p$. We end with conditional interpretation, giving $p \rightarrow(q \wedge r)$.
9. State and prove modus tollens, using semantic theorems only (no truth tables).

Thm: Let p, q be propositions. Then $p \rightarrow q, \neg q \vdash \neg p$.
Pf 1: We assume $p \rightarrow q$ and $\neg q$. By conditional interpretation, $q \vee \neg p$. By disjunctive syllogism, $\neg p$.
Pf 2: We assume $p \rightarrow q$ and $\neg q$. We have $p \rightarrow q \equiv(\neg q) \rightarrow(\neg p)$, its contrapositive. By modus ponens, $\neg p$.
10. Prove or disprove: $\exists x \in \mathbb{R} \forall y \in \mathbb{R},|y| \leq|y+x|$.

The statement is true. Take $x=0$. Now, let $y \in \mathbb{R}$ be arbitrary. $|y|=|y+0| \leq|y+0|=|y+x|$.
Note: For full credit, the structure must be: (1) specific choice for x; (2) let y be arbitrary; (3) algebra; (4) ends with $|y| \leq|y+x|$. Also, a solution must specify whether you are proving or disproving.

