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10.

MATH 245 S19, Exam 1 Solutions

Carefully define the following terms: even, tautology, converse, predicate.

An integer n is even if there exists an integer m, with n = 2m. A (compound) proposition is a tautology
if it is logically equivalent to T. The converse of conditional proposition p — ¢ is ¢ — p. A predicate is a
collection of propositions, indexed by one or more free variables, each drawn from its domain.

Carefully define the following terms: Division Algorithm theorem, Commutativity theorem, Conjunction se-
mantic theorem, Contrapositive Proof theorem.

The Division Algorithm theorem states that for any a,b € Z, with b > 1, there are unique integers ¢, with
a=>bqg+rand 0 <r <b. The Commutativity theorem states that if p, ¢ are propositions, then pAg=qgAp
and pV q = qV p. The Conjunction semantic theorem states if p,q are propositions, then p,q - p A q. The
Contrapositive Proof theorem states that if —=¢q - —p is valid, then p — ¢ is true.

Let n € N be arbitrary. Prove that n|n!.

Since n > 1, n! =n - (n — 1)L Since (n — 1)! is an integer, n|n!.

Let a,b,c € Z. Suppose that a < b. Prove that a + ¢ < b+ c.

Note: do not just cite a theorem.

Since a < b, b—a € Ng. Hence (b+c¢) — (a+¢) =b—a € Ny, and hence a + ¢ < b+c.

Note: Solutions need to use the definition of <, twice.

Let p, g be propositions. Prove that p 1 ¢ = —(p A q).

Pf. The third and fifth columns of the truth table P ¢ pTq pAg —(pAg)
(to the right) agree; hence the two propositions are 1 T  F T F
equivalent. T F T F T

F T T F T

F F T F T

Prove or disprove: Vz € R, 22 > x.

The statement is false. We need one explicit counterexample. Take z = % € R. We have 22 = i ?

=XT.

N[

Prove or disprove: For arbitrary x € R, if x is irrational then 2z — 1 is irrational.

The statement is true. Contrapositive proof. We assume 2z — 1 is rationsl. Hence there are integers a, b, with
b # 0, such that 2z — 1= ¢. Now, 2z = § + 1= QTH’, and z = “;bb. We have a 4+ b,2b € Z, and 2b # 0, so x
is rational.

Without using truth tables, prove the Composition Theorem: (p — ¢) A(p = 7)Ep— (gAT).

METHOD 1: direct proof. We apply Conditional Interpretation twice to the hypothesis, to get ((—p) V ¢) A
((=p) V). Now we apply distributivity to get (—p) V (¢ A r). We apply Conditional Interpretation again to
get p— (gAT).

METHOD 2: cases, based on p. Case p is false: By addition, (g A7) V —p.

Case p is true: By simplification on the hypothesis, p — ¢; and, by modus ponens, ¢. Now by simplification
on the hypothesis the other way, p — r; and, by modus ponens, . Now, by conjunction, ¢ A r. By addition,
(g A1)V —p. Hence, in both cases, (¢ A )V —p. We end with conditional interpretation, giving p — (¢ A ).

State and prove modus tollens, using semantic theorems only (no truth tables).

Thm: Let p, g be propositions. Then p — ¢, —g - —p.

Pf 1: We assume p — ¢ and —¢q. By conditional interpretation, ¢ V —p. By disjunctive syllogism, —p.

Pf 2: We assume p — ¢ and —~q. We have p — ¢ = (—q) — (—p), its contrapositive. By modus ponens, —p.

Prove or disprove: 3z € R Vy € R, |y| < |y + z|.

The statement is true. Take z = 0. Now, let y € R be arbitrary. |y| =|y+0| < |y +0| = |y + z|.
Note: For full credit, the structure must be: (1) specific choice for z; (2) let y be arbitrary; (3) algebra; (4)
ends with |y| < |y + z|. Also, a solution must specify whether you are proving or disproving.



