
MATH 245 S19, Exam 1 Solutions

1. Carefully define the following terms: even, tautology, converse, predicate.

An integer n is even if there exists an integer m, with n = 2m. A (compound) proposition is a tautology
if it is logically equivalent to T . The converse of conditional proposition p → q is q → p. A predicate is a
collection of propositions, indexed by one or more free variables, each drawn from its domain.

2. Carefully define the following terms: Division Algorithm theorem, Commutativity theorem, Conjunction se-
mantic theorem, Contrapositive Proof theorem.

The Division Algorithm theorem states that for any a, b ∈ Z, with b ≥ 1, there are unique integers q, r with
a = bq + r and 0 ≤ r < b. The Commutativity theorem states that if p, q are propositions, then p ∧ q ≡ q ∧ p
and p ∨ q ≡ q ∨ p. The Conjunction semantic theorem states if p, q are propositions, then p, q ` p ∧ q. The
Contrapositive Proof theorem states that if ¬q ` ¬p is valid, then p→ q is true.

3. Let n ∈ N be arbitrary. Prove that n|n!.

Since n ≥ 1, n! = n · (n− 1)!. Since (n− 1)! is an integer, n|n!.

4. Let a, b, c ∈ Z. Suppose that a ≤ b. Prove that a + c ≤ b + c.
Note: do not just cite a theorem.

Since a ≤ b, b− a ∈ N0. Hence (b + c)− (a + c) = b− a ∈ N0, and hence a + c ≤ b + c.
Note: Solutions need to use the definition of ≤, twice.

5. Let p, q be propositions. Prove that p ↑ q ≡ ¬(p ∧ q).

Pf. The third and fifth columns of the truth table
(to the right) agree; hence the two propositions are
equivalent.

p q p ↑ q p ∧ q ¬(p ∧ q)
T T F T F
T F T F T
F T T F T
F F T F T

6. Prove or disprove: ∀x ∈ R, x2 ≥ x.

The statement is false. We need one explicit counterexample. Take x = 1
2 ∈ R. We have x2 = 1

4 6≥
1
2 = x.

7. Prove or disprove: For arbitrary x ∈ R, if x is irrational then 2x− 1 is irrational.

The statement is true. Contrapositive proof. We assume 2x−1 is rationsl. Hence there are integers a, b, with
b 6= 0, such that 2x− 1 = a

b . Now, 2x = a
b + 1 = a+b

b , and x = a+b
2b . We have a + b, 2b ∈ Z, and 2b 6= 0, so x

is rational.

8. Without using truth tables, prove the Composition Theorem: (p→ q) ∧ (p→ r) ` p→ (q ∧ r).

METHOD 1: direct proof. We apply Conditional Interpretation twice to the hypothesis, to get ((¬p) ∨ q) ∧
((¬p) ∨ r). Now we apply distributivity to get (¬p) ∨ (q ∧ r). We apply Conditional Interpretation again to
get p→ (q ∧ r).

METHOD 2: cases, based on p. Case p is false: By addition, (q ∧ r) ∨ ¬p.
Case p is true: By simplification on the hypothesis, p→ q; and, by modus ponens, q. Now by simplification
on the hypothesis the other way, p→ r; and, by modus ponens, r. Now, by conjunction, q ∧ r. By addition,
(q ∧ r) ∨ ¬p. Hence, in both cases, (q ∧ r) ∨ ¬p. We end with conditional interpretation, giving p→ (q ∧ r).

9. State and prove modus tollens, using semantic theorems only (no truth tables).

Thm: Let p, q be propositions. Then p→ q,¬q ` ¬p.
Pf 1: We assume p→ q and ¬q. By conditional interpretation, q ∨ ¬p. By disjunctive syllogism, ¬p.
Pf 2: We assume p→ q and ¬q. We have p→ q ≡ (¬q)→ (¬p), its contrapositive. By modus ponens, ¬p.

10. Prove or disprove: ∃x ∈ R ∀y ∈ R, |y| ≤ |y + x|.

The statement is true. Take x = 0. Now, let y ∈ R be arbitrary. |y| = |y + 0| ≤ |y + 0| = |y + x|.
Note: For full credit, the structure must be: (1) specific choice for x; (2) let y be arbitrary; (3) algebra; (4)
ends with |y| ≤ |y + x|. Also, a solution must specify whether you are proving or disproving.


