MATH 245 S19, Exam 1 Solutions

1. Carefully define the following terms: even, tautology, converse, predicate.

An integer n is even if there exists an integer m, with n = 2m. A (compound) proposition is a tautology if it is logically equivalent to T. The converse of conditional proposition $p \to q$ is $q \to p$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain.

2. Carefully define the following terms: Division Algorithm theorem, Commutativity theorem, Conjunction semantic theorem, Contrapositive Proof theorem.

The Division Algorithm theorem states that for any $a, b \in \mathbb{Z}$, with $b \ge 1$, there are unique integers q, r with a = bq + r and $0 \le r < b$. The Commutativity theorem states that if p, q are propositions, then $p \land q \equiv q \land p$ and $p \lor q \equiv q \lor p$. The Conjunction semantic theorem states if p, q are propositions, then $p, q \vdash p \land q$. The Contrapositive Proof theorem states that if $\neg q \vdash \neg p$ is valid, then $p \rightarrow q$ is true.

3. Let $n \in \mathbb{N}$ be arbitrary. Prove that n|n!.

Since $n \ge 1$, $n! = n \cdot (n-1)!$. Since (n-1)! is an integer, n|n!.

4. Let $a, b, c \in \mathbb{Z}$. Suppose that $a \leq b$. Prove that $a + c \leq b + c$. Note: do not just cite a theorem.

Since $a \leq b, b - a \in \mathbb{N}_0$. Hence $(b + c) - (a + c) = b - a \in \mathbb{N}_0$, and hence $a + c \leq b + c$. Note: Solutions need to use the definition of \leq , twice.

5.	Let p, q be propositions. Prove that $p \uparrow q \equiv \neg(p \land q)$.						
	Pf. The third and fifth columns of the truth table	p	q	$p\uparrow q$	$p \wedge q$	$\neg (p \land q)$	
	(to the right) agree; hence the two propositions are	T	T	F	T	F	
	equivalent.	T	F	T	F	T	
		F	T	T	F	T	
		F	F	T	F	T	

6. Prove or disprove: $\forall x \in \mathbb{R}, x^2 \ge x$.

The statement is false. We need one explicit counterexample. Take $x = \frac{1}{2} \in \mathbb{R}$. We have $x^2 = \frac{1}{4} \not\geq \frac{1}{2} = x$.

7. Prove or disprove: For arbitrary $x \in \mathbb{R}$, if x is irrational then 2x - 1 is irrational.

The statement is true. Contrapositive proof. We assume 2x - 1 is rational. Hence there are integers a, b, with $b \neq 0$, such that $2x - 1 = \frac{a}{b}$. Now, $2x = \frac{a}{b} + 1 = \frac{a+b}{b}$, and $x = \frac{a+b}{2b}$. We have $a + b, 2b \in \mathbb{Z}$, and $2b \neq 0$, so x is rational.

8. Without using truth tables, prove the Composition Theorem: $(p \to q) \land (p \to r) \vdash p \to (q \land r)$.

METHOD 1: direct proof. We apply Conditional Interpretation twice to the hypothesis, to get $((\neg p) \lor q) \land$ $((\neg p) \lor r)$. Now we apply distributivity to get $(\neg p) \lor (q \land r)$. We apply Conditional Interpretation again to get $p \to (q \land r)$.

METHOD 2: cases, based on p. Case p is false: By addition, $(q \wedge r) \lor \neg p$.

Case p is true: By simplification on the hypothesis, $p \to q$; and, by modus ponens, q. Now by simplification on the hypothesis the other way, $p \to r$; and, by modus ponens, r. Now, by conjunction, $q \wedge r$. By addition, $(q \wedge r) \lor \neg p$. Hence, in both cases, $(q \wedge r) \lor \neg p$. We end with conditional interpretation, giving $p \to (q \wedge r)$.

- 9. State and prove modus tollens, using semantic theorems only (no truth tables).
 Thm: Let p, q be propositions. Then p → q, ¬q ⊢ ¬p.
 Pf 1: We assume p → q and ¬q. By conditional interpretation, q ∨ ¬p. By disjunctive syllogism, ¬p.
 Pf 2: We assume p → q and ¬q. We have p → q ≡ (¬q) → (¬p), its contrapositive. By modus ponens, ¬p.
- 10. Prove or disprove: $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R}, |y| \le |y+x|.$

The statement is true. Take x = 0. Now, let $y \in \mathbb{R}$ be arbitrary. $|y| = |y+0| \le |y+0| = |y+x|$. Note: For full credit, the structure must be: (1) specific choice for x; (2) let y be arbitrary; (3) algebra; (4) ends with $|y| \le |y+x|$. Also, a solution must specify whether you are proving or disproving.